Forecasting Palm Oil Production Using Long Short-Term Memory (LSTM) With Time Series Cross Validation (TSCV)

Authors

  • Nuke Huda Setiawan Faculty of Engineering, Department of Industrial Engineering, Universitas Indonesia, Indonesia
  • Zulkarnain Zulkarnain Faculty of Engineering, Department of Industrial Engineering, Universitas Indonesia, Indonesia

DOI:

https://doi.org/10.46799/ijssr.v4i05.780

Keywords:

Oil palm, Short-Term Memory, With Time Series Cross Validation

Abstract

Oil palm plant (Elaeis guineensis Jacq.) is a plantation crop that has a high economic value for Indonesia, because the results of oil palm plantations can increase the country's foreign exchange. Oil palm plantations can create jobs for the people of Indonesia, thus reducing unemployment in Indonesia. Oil palm plantations in Indonesia have spread to various regions, besides being found on the islands of Sumatra and Kalimantan, now oil palm plantations are almost found in various regions in Indonesia both small-scale plantations and large-scale plantations. This research uses historical data in the form of monthly palm oil production to predict the price of strategic food commodities. The period of palm oil production used is from January 1997 to December 2023 obtained from the website of PT. X or documentation data at PT. X. In this study the data was divided into 4 data scenarios using the Time Series Cross Validation (TSCV) method. The results of palm oil production modeling with LSTM that have been carried out show that palm oil production data shows differences in forecasting values and accuracy in the number of neurons and epochs used. The conclusion of this study is that from data processing and analysis in the previous chapter, it can be concluded that forecasting the amount of palm oil production in PT X can be modeled with LTSM and SARIMA method using Time Series Cross Validation (TSCV) data.

References

Adhiva, J., Putri, S. A., & Setyorini, S. G. (2020). Prediksi Hasil Produksi Kelapa

Sawit Menggunakan Model Regresi pada PT. Perkebunan Nusantara V. Jurnal Semin. Nas. Teknol. Informasi, Komun. dan Ind, 155–162. https://scholar.google.com/citations?view_op=view_citation&hl=id&user=eRDX3NAAAAAJ&citation_for_view=eRDX3NAAAAAJ:Y0pCki6q_DkC.

Agustina, L. (2013). Dasar Nutrisi Tanaman. Jakarta: Rineka Cipta.

Baskoro, F.M. (2023). Indonesia-Malaysia Bergerak Bersama Jaga Pasar Minyak Kelapa Sawit di India. https://www.beritasatu.com/ekonomi/1069016/indonesiamalaysia-bergerak-bersama-jaga-pasar-minyak-kelapa-sawit-di-india.

Cryer, J., & Chan, K.-S. (2013). Time Series Analysis With Apllication in R USA: Springer.

Ditjenbun. (2021). Statistik Perkebunan Unggulan Nasional 2019-2021, Kelapa Sawit. Jakarta: Direktorat Jendral Perkebunan Kementerian Pertanian Republik Indonesia.

Deng, A. (2023). A Note on Time Series Cross Validation: Theoretical Properties and Empirical Performance. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4366573.

Elvani, S. P., Utary, A. R., & Yudaruddin, R. (2016). Peramalan Jumlah Produksi Tanaman Kelapa Sawit dengan Menggunakan Metode Arima. Jurnal Manajemen, 8(1), 95–112. https://journal.feb.unmul.ac.id/index.php/JURNALMANAJEMEN/article/view/1189%0Ahttps://journal.feb.unmul.ac.id/index.php/JURNALMANAJEMEN/article/download/1189/115

Fauziah, F., Ningsih, Y. I., & Setiarini, E. (2019). Analisis Peramalan (Forecasting) Penjualan Jasa Pada Warnet Bulian City di Muara Bulian. Eksis: Jurnal Ilmiah Ekonomi Dan Bisnis, 10(1), 61. https://doi.org/10.33087/eksis.v10i1.160

Fisabti, D. A. (2022). Forecasting Jumlah Produksi Kelapa Sawit Menggunakan Metode Fuzzy Time Series Average Based. Tugas Akhir. Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau. https://repository.uin-suska.ac.id/57810/1/LAPORAN%20LENGKAP%20TANPA%20HASIL%20PENELITIAN.pdf.

García-Rodríguez, L. D. C., Prado-Olivarez, J., Guzmán-Cruz, R., Rodríguez-Licea, M. A., Barranco-Gutiérrez, A. I., Perez-Pinal, F. J., & Espinosa-Calderon, A. (2022). Mathematical Modeling to Estimate Photosynthesis: A State of the Art. Applied Sciences (Switzerland), 12(11). https://doi.org/10.3390/app12115537

GAPKI. (2018). Sawit Indonesia Menyongsong Awal Tahun yang Lebih Menjanjikan. Jakarta. https://gapki.id/news/14413/sawit-indonesia-menyongsong-awal-tahun-yang-lebih-menjanjikan.

Ginting, R. (2013). Sistem Produksi. Yogyakarta: Graha Ilmu.

Gujarati, D., & Porter, D. C. (2013). Econometrics. New York: Mc. Graw Hill Inc.

Hasibuan, S. L., & Novialdi, Y. (2022). Prediction of Bulk and Packaged Cooking Oil Prices Using the Long Short-Term Memory (LSTM) Algorithm. Jurnal Ilmu Komputer Dan Agri-Informatika 9(2):149-157, 9. https://jurnal.ipb.ac.id/index.php/jika

Heizer, J., & Render, B. (2013). Operation Management (Manajemen Operasi). Jakarta: Salemba Empat.

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

Kiswanto, J.H., Purwanta, B., & Wijayanto (2008). Bogor Teknologi Budidaya Kelapa Sawit. Balai Besar Pengkajian dan Pengembangan Teknologi Pertanian. Bogor: Balai Pengkajian Teknologi Pertanian Lampung.

Lu, Y. Shi, Y., Jia, G., & Yang, J. (2018). A new method for semantic consistency verification of aviation radiotelephony communication based on LSTM-RNN. Int. Conf. Digit. Signal Process DSP, pp. 422–426.

Lipton, Z. C., Kale, D. C., Elkan, C., & Wetzel, R. (2015). Learning to diagnose with LSTM recurrent neural networks, arXiv preprint arXiv:1511.03677.

Luthfiah, Agmalaro, H., & Asyhar, M. (2018). Prediksi Temporal untuk Kemunculan Titik Panas di Kabupaten Rokan Hilir Riau Menggunakan Long Short Term Memory RNN. https://repository.ipb.ac.id/handle/123456789/94441.

Lv, S-X. (2022). Effective machine learning model combination based on selective ensemble strategy for time series forecasting. Information Sciences 612, Pages 994-1023. https://www.sciencedirect.com/science/article/abs/pii/S0020025522010465.

Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A Critical Review of Recurrent Neural Networks for Sequence Learning. June. http://arxiv.org/abs/1506.00019

Marpaung, D., Sumarno, S., & Gunawan, I. (2020). Prediksi Produktivitas Kelapa Sawit di PTPN IV dengan Algoritma Backpropagation. Kajian Ilmiah Informatika & Komputer, 1(2), 35–41.

Montgomery, D. C., Johnson, L. A., & Gardiner, J. S. (2013). Forecasting and Time Series Analysis. New York: McGraw-Hill.

Mukhlis, M., Kustiyo, A., & Suharso, A. (2021). Peramalan Produksi Pertanian Menggunakan Model Long Short-Term Memory. Bina Insani Ict Journal, 8(1), 22. https://doi.org/10.51211/biict.v8i1.1492

Pang, M. B., & Zhao, X. P. (2008). Traffic Flow Prediction of Chaos Time Series by Using Subtractive Clustering for Fuzzy Neural Network Modeling. Proceedings - Second International Symposium on Intelligent Information Technology Application, IEEE Computer Society, 1, 23–27. http://doi.org/10.1109/IITA.2008.50.

Pahan, I. (2013). Panduan Lengkap Kelapa Sawit: Manajemen Agribisnis dari Hulu Hingga Hilir. Jakarta: Penerbit Swadaya.

Puspitasari, D. I. (2017). Penerapan Data Mining Menggunakan Perbandingan Algoritma Greedy Dengan Algoritma Genetika Pada Prediksi Rentet Waktu Harga Crude Palm Oil. Elinvo (Electronics, Informatics, and Vocational Education), 2(1), 21–26. https://doi.org/10.21831/elinvo.v2i1.13033.

Rusmilawati, N., & & Prasetyaningrum, P.T. (2021). Penerapan Data Mining Dalam Prediksi Hasil Produksi Kelapa Sawit PT Borneo Ketapang Indah Menggunaka Metode Linier Regression. Journal Of System and Artificial Intelligence 1(2), 1–7. http://jisai.mercubuana-yogya.ac.id/index.php/jisai/article/view/33%0Ahttp://jisai.mercubuana.

Sen, S., Sugiarto, D., & Rochman, A. (2020). Komparasi Metode Multilayer Perceptron ( MLP ) dan Long Short Term Memory ( LSTM ) dalam Peramalan Harga Beras. XII(1), 35–41.

Syarovy, M., Nugroho, A. P., Sutiarso, L., Suwardi, Muna, M. S., Wiratmoko, A., Sukarman, & Primananda, S. (2023). Prediction of Oil Palm Production Using Recurrent Neural Network Long Short-Term Memory (RNN-LSTM) (Vol. 1). Atlantis Press International BV. https://doi.org/10.2991/978-94-6463-122-7_6

Sastrosayono, S. (2013). Budidaya Kelapa Sawit. Jakarta: Agromedia Pustaka.

Syarovy, M., Nugroho, A. P., Sutiarso, L., Suwardi, Muna, M. S., Wiratmoko, A., Sukarman, & Primananda, S. (2023). Utilization of Big Data in Oil Palm Plantation to Predict Production Using Artificial Neural Network Model. Proceedings of the International Conference on Sustainable Environment, Agriculture and Tourism (ICOSEAT 2022), 26(January). https://doi.org/10.2991/978-94-6463-086-2_67

Setyamidjaja, D. (2013). Kelapa Sawit?: Teknik Budi Daya; Panen, dan Pengolahan. Jakarta: Kanisius.

Syahputra, E., -, S., & Dian, S. (2011). Weeds Assessment di Perkebunan Kelapa Sawit Lahan Gambut. Perkebunan Dan Lahan Tropika, 1(1), 37. https://doi.org/10.26418/plt.v1i1.120

Supangat, A. (2013). Statistika Dalam Kajian Deskriptif. Jakarta: Gramedia Pustaka Utama

Sekaran, U., & Bougie. (2013). Research Methods For Business: A Skill Building Approach. New Delhi: Sharda Ofsett Press.

Widarjono, A. (2015). Ekonometrika. Yogyakarta: Ekonisia FE UII.

Wahyudi. (2021). Peramalan produksi Tandan Buah Segar (TBS) kelapa sawit di PT. Bintang Selatan Agro menggunakan jaringan syaraf tiruan algoritma Backpropagation dan Conjugate Gradient Powell- Beale Restarts. Indonesian Journal of Data and Science, 2(3), 133–147. https://doi.org/10.56705/ijodas.v2i3.56

Wiranda, L., & Sadikin, M. (2019). Penerapan Long Short Term Memory Pada Data Time Series Untuk Memprediksi Penjualan Produk Pt. Metiska Farma. Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), 8(3), 184–196.

Zahara, S., Sugianto, & M. Bahril Ilmiddafiq. (2019). Prediksi Indeks Harga Konsumen Menggunakan Metode Long Short Term Memory (LSTM) Berbasis Cloud Computing. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 3(3), 357–363. https://doi.org/10.29207/resti.v3i3.1086.

Downloads

Published

2024-05-25