Development and Threats of Artificial Intelligence in Industry and Workforce


  • Francisca Romana Nanik Alfiani Universitas Borobudur, North Jakarta, DKI Jakarta



Development and Threat, Artificial Intelligence, Industry, Workforce


The abstract explores the transformative impact of Artificial Intelligence (AI) on global industries, highlighting its role in enhancing efficiency and innovation while also posing challenges such as job automation, skills gaps, data misuse, and ethical concerns. Drawing from the Global Risk Report 2024 and recent regulatory actions by the European Union and Indonesia, the abstract discusses the pressing need for AI governance. However, it lacks specificity in articulating the study's objectives and scope, and could benefit from providing concrete examples or statistics to support its claims. A clearer organizational structure and citation of relevant sources would enhance the coherence and credibility of the abstract. Furthermore, while emphasizing the importance of human control over AI, the abstract could offer a more nuanced conclusion that underscores the significance of the study's findings in achieving this goal.


Abdullah, A. A. H., & Almaqtari, F. A. (2024). The impact of artificial intelligence and Industry 4.0 on transforming accounting and auditing practices. Journal of Open Innovation: Technology, Market, and Complexity, 10(1).

Abioye, S. O., Oyedele, L. O., Akanbi, L., Ajayi, A., Davila Delgado, J. M., Bilal, M., Akinade, O. O., & Ahmed, A. (2021). Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges. Journal of Building Engineering, 44.

Addanki, M., Patra, P., & Kandra, P. (2022). Recent advances and applications of artificial intelligence and related technologies in the food industry. Applied Food Research, 2(2).

Alenizi, F. A., Abbasi, S., Hussein Mohammed, A., & Masoud Rahmani, A. (2023). The artificial intelligence technologies in Industry 4.0: A taxonomy, approaches, and future directions. Computers and Industrial Engineering, 185.

Bangkara, R. P., & Mimba, N. (2016). Pengaruh perceived usefulness dan perceived ease of use pada minat penggunaan internet banking dengan attitude toward using sebagai variabel intervening. E-Jurnal Akuntansi Universitas Udayana, 16(3), 2408–2434.

Brundage, M., Avin, S., Clark, J., Toner, H., Eckersley, P., Garfinkel, B., Dafoe, A., Scharre, P., Zeitzoff, T., & Filar, B. (2018). The malicious use of artificial intelligence: Forecasting, prevention, and mitigation. ArXiv Preprint ArXiv:1802.07228.

Chui, M., Yee, L., Hall, B., & Singla, A. (2023). The state of AI in 2023: Generative AI’s breakout year.

Druckman, A., & Mair, S. (2019). Wellbeing, Care and Robots—Prospects for good work in the health and social care sector. CUSP Work. Pap., 21.

Habbal, A., Ali, M. K., & Abuzaraida, M. A. (2024). Artificial Intelligence Trust, Risk and Security Management (AI TRiSM): Frameworks, applications, challenges and future research directions. Expert Systems with Applications, 240.

Hasani, N., Farhadi, F., Morris, M. A., Nikpanah, M., Rhamim, A., Xu, Y., Pariser, A., Collins, M. T., Summers, R. M., Jones, E., Siegel, E., & Saboury, B. (2022). Artificial Intelligence in Medical Imaging and its Impact on the Rare Disease Community: Threats, Challenges and Opportunities. PET Clinics, 17(1), 13–29.

He, J., Feng, W., Min, Y., Yi, J., Tang, K., Li, S., Zhang, J., Chen, K., Zhou, W., & Xie, X. (2023). Control risk for potential misuse of artificial intelligence in science. ArXiv Preprint ArXiv:2312.06632.

Hossain, M. A., Agnihotri, R., Rushan, M. R. I., Rahman, M. S., & Sumi, S. F. (2022). Marketing analytics capability, artificial intelligence adoption, and firms’ competitive advantage: Evidence from the manufacturing industry. Industrial Marketing Management, 106, 240–255.

LI, Y. (2023). Relationship between perceived threat of artificial intelligence and turnover intention in luxury hotels. Heliyon, 9(8).

Liang, C.-J., Le, T.-H., Ham, Y., Mantha, B. R. K., Cheng, M. H., & Lin, J. J. (2024). Ethics of artificial intelligence and robotics in the architecture, engineering, and construction industry. Automation in Construction, 162, 105369.

Mahalakshmi, V., Kulkarni, N., Pradeep Kumar, K. V., Suresh Kumar, K., Nidhi Sree, D., & Durga, S. (2022). The Role of implementing Artificial Intelligence and Machine Learning Technologies in the financial services Industry for creating Competitive Intelligence. Materials Today: Proceedings, 56, 2252–2255.

Marr, B. (2019). Artificial intelligence in practice: how 50 successful companies used AI and machine learning to solve problems. John Wiley & Sons.

Mpatziakas, A., Drosou, A., Papadopoulos, S., & Tzovaras, D. (2022). IoT threat mitigation engine empowered by artificial intelligence multi-objective optimization. Journal of Network and Computer Applications, 203.

Nazir, A., He, J., Zhu, N., Wajahat, A., Ullah, F., Qureshi, S., Ma, X., & Pathan, M. S. (2024). Collaborative threat intelligence: Enhancing IoT security through blockchain and machine learning integration. Journal of King Saud University - Computer and Information Sciences, 36(2).

Ofosu-Ampong, K. (2024). Artificial intelligence research: A review on dominant themes, methods, frameworks and future research directions. Telematics and Informatics Reports, 14.

Pantano, E., Marikyan, D., & Papagiannidis, S. (2024). The dark side of artificial intelligence for industrial marketing management: Threats and risks of AI adoption. Industrial Marketing Management, 116, A1–A3.

Park, J. J. (2024). Unlocking training transfer in the age of artificial intelligence. Business Horizons.

Permana, A. A., Darmawan, R., Saputri, F. R., Harto, B., Al-Hakim, R. R., Wijayanti, R. R., Safii, M., Pasaribu, J. S., & Rukmana, A. Y. (2023). Artificial Intelligence Marketing. Padang: Global Eksekutif Teknologi.

Sadeghi R., K., Ojha, D., Kaur, P., Mahto, R. V., & Dhir, A. (2024). Explainable artificial intelligence and agile decision-making in supply chain cyber resilience. Decision Support Systems, 180.

Schluse, M., Priggemeyer, M., Atorf, L., & Rossmann, J. (2018). Experimentable digital twins—Streamlining simulation-based systems engineering for industry 4.0. IEEE Transactions on Industrial Informatics, 14(4), 1722–1731.

Schmitt, M. (2023). Securing the digital world: Protecting smart infrastructures and digital industries with artificial intelligence (AI)-enabled malware and intrusion detection. Journal of Industrial Information Integration, 36.

Sharma, P., Shah, J., & Patel, R. (2022). Artificial intelligence framework for MSME sectors with focus on design and manufacturing industries. Materials Today: Proceedings, 62(P13), 6962–6966.

Spilseth, B., McKnight, C. D., Li, M. D., Park, C. J., Fried, J. G., Yi, P. H., Brian, J. M., Lehman, C. D., Wang, X. J., Phalke, V., Pakkal, M., Baruah, D., Khine, P. P., & Fajardo, L. L. (2022). AUR-RRA Review: Logistics of Academic-Industry Partnerships in Artificial Intelligence. Academic Radiology, 29(1), 119–128.

Sudarsono, B., Tentama, F., & Ghozali, F. A. (2022). Employability Analysis of Students in Yogyakarta: Confirmatory Factor Analysis. Al-Ishlah: Jurnal Pendidikan, 14(2), 1451–1462.

Sugiyono, S. (2017). Metode Penelitian Kuantitatif Kualitatif dan R&D. Bandung: Alfabeta. Procrastination And Task Avoidance: Theory, Research and Treatment. New York: Plenum Press, Yudistira P, Chandra.

Sun, Z., Sandoval, L., Crystal-Ornelas, R., Mousavi, S. M., Wang, J., Lin, C., Cristea, N., Tong, D., Carande, W. H., Ma, X., Rao, Y., Bednar, J. A., Tan, A., Wang, J., Purushotham, S., Gill, T. E., Chastang, J., Howard, D., Holt, B., … John, A. (2022). A review of Earth Artificial Intelligence. Computers & Geosciences, 159, 105034.

Supriyanto, E. E., Warsono, H., & Herawati, A. R. (2021). Literature Study on the Use of Big Data and Artificial Intelligence in Policy Making in Indonesia. Administratio, 12(2), 139–153.

Thapa, A., Nishad, S., Biswas, D., & Roy, S. (2023). A comprehensive review on artificial intelligence assisted technologies in food industry. Food Bioscience, 56.

Trzaska, R., & Sus, A. (2023). Industry 4.0 business strategic risks based on the scalability 4.0 concept. Artificial Intelligence area. Procedia Computer Science, 225, 3255–3264.

Yang, S. J. H., Ogata, H., Matsui, T., & Chen, N.-S. (2021). Human-centered artificial intelligence in education: Seeing the invisible through the visible. Computers and Education: Artificial Intelligence, 2, 100008.