Identification of Fresh and Unfresh Fish Based on Eye Image Using The Self-Organizing Maps (SOM) Method

Authors

  • Edwhin Rantho Rafafi Yogyakarta University of Technology
  • Enny Itje Sela Yogyakarta University of Technology

DOI:

https://doi.org/10.46799/ijssr.v3i11.593

Keywords:

Self-Organizing Maps, Fish, Neural Network

Abstract

Fish is a common protein source and easy to obtain in Indonesia, but because of its high water content, fish quickly spoils. Fish freshness can be detected using several conventional methods, such as chemical analysis, biochemistry, microbiological analysis, and sensory examination. Another identification method involves observing the color of the fish's eyes. Fish identification is crucial before any further processing, ensuring that the fish's quality delivered to consumers remains high. To tackle the problem of differentiating between fresh and non-fresh fish, this research employs Self-Organizing Maps (SOM) as the primary methodology. This research focuses on identifying fresh and non-fresh fish using the SOM method, using actual data involving tilapia as the research object. The data includes eye images of new and non-fresh fish, and various procedures are required to obtain the desired data. This data is then used as training and testing data. The process continues with the preprocessing stage, which is a data modification process to improve performance in subsequent steps and feature extraction using HSV color histograms. Classification of processed data is carried out using the SOM method. Once completed, the identification results are displayed. This research produces a system for identifying fresh and non-fresh fish based on eye images using SOM, which achieves a good accuracy of 85.71%.

References

Asri, P. P., & Wulanningrum, R. (2021). Implementation of SOM (Self Organizing Maps) for Identification of Tomato Fruit Maturity. JTECS: Jurnal Sistem Telekomunikasi Elektronika Sistem Kontrol Power Sistem Dan Komputer, 1(2), 185–192.

Cui, B., Créput, J. C., & Zhang, L. (2023). Self-organizing maps and full GPU parallel approach to graph matching. Computer Communications, 198, 217–227. https://doi.org/10.1016/J.COMCOM.2022.12.005

David, D., Robet, R., & Raymond, R. (2022). Aplikasi Pengenalan Ikan Berformalin Melalui Deteksi Mata Menggunakan Metode Template Matching Dan Metode Klasifikasi KNN. Jurnal Ilmiah Core IT: Community Research Information Technology, 10(4).

ElMasry, G., Nakazawa, N., Okazaki, E., & Nakauchi, S. (2016). Non-invasive sensing of freshness indices of frozen fish and fillets using pretreated excitation–emission matrices. Sensors and Actuators B: Chemical, 228, 237–250. https://doi.org/10.1016/J.SNB.2016.01.032

Jahanbakht, M., Azghadi, M. R., & Waltham, N. J. (2023). Semi-supervised and weakly-supervised deep neural networks and dataset for fish detection in turbid underwater videos. Ecological Informatics, 78, 102303. https://doi.org/10.1016/J.ECOINF.2023.102303

Kim, S. H., Cho, K. J., Kim, T. S., Lee, C. S., Dhakal, T., & Jang, G. S. (2023). Classifying habitat characteristics of wetlands using a self-organizing map. Ecological Informatics, 75. https://doi.org/10.1016/J.ECOINF.2023.102048

Li, S., Chon, T. S., Park, Y. S., Shi, X., & Ren, Z. (2020). Application of temporal self-organizing maps to patterning short-time series of fish behavior responding to environmental stress. Ecological Modelling, 433. https://doi.org/10.1016/J.ECOLMODEL.2020.109242

Li, T., Sun, G., Yang, C., Liang, K., Ma, S., & Huang, L. (2018). Using self-organizing map for coastal water quality classification: Towards a better understanding of patterns and processes. Science of the Total Environment, 628–629, 1446–1459. https://doi.org/10.1016/J.SCITOTENV.2018.02.163

Maulida, M., Wijaya, E. S., & Anwar, M. R. (2021). DETEKSI IKAN TONGKOL BERFORMALIN BERDASARKAN CITRA MATA IKAN DENGAN METODE NAÏVE BAYES CLASSIFIER. KLIK-KUMPULAN JURNAL ILMU KOMPUTER, 8(3), 305–313.

Mohammadi Lalabadi, H., Sadeghi, M., & Mireei, S. A. (2020). Fish freshness categorization from eyes and gills color features using multi-class artificial neural network and support vector machines. Aquacultural Engineering, 90. https://doi.org/10.1016/J.AQUAENG.2020.102076

Moreira, L. S., Costa, F. S., Machado, R. C., Nogueira, A. R. A., Gonzalez, M. H., da Silva, E. G. P., & Amaral, C. D. B. (2021). Self-organizing map applied to the choice of internal standards for the determination of Cd, Pb, Sn, and platinum group elements by inductively coupled plasma mass spectrometry. Talanta, 233. https://doi.org/10.1016/J.TALANTA.2021.122534

Nuraini, R. (2022). Implementasi Jaringan Syaraf Tiruan Menggunakan Metode Self-Organizing Map Pada Klasifikasi Citra Jenis Ikan Kakap. Building of Informatics, Technology and Science (BITS), 4(3), 1325–1333.

Pariyandani, A., Larasati, D. A., Wanti, E. P., & Muhathir, M. (2019). Klasifikasi Citra Ikan Berformalin Menggunakan Metode K-NN dan GLCM. Semantika (Seminar Nasional Teknik Informatika), 2(1), 42–47.

Penczak, T., G?owacki, Kruk, A., & Galicka, W. (2012). Implementation of a self-organizing map for investigation of impoundment impact on fish assemblages in a large, lowland river: Long-term study. Ecological Modelling, 227, 64–71. https://doi.org/10.1016/J.ECOLMODEL.2011.12.006

Putra, W. S. E. (2016). Klasifikasi citra menggunakan convolutional neural network (CNN) pada caltech 101. Jurnal Teknik ITS, 5(1).

Quijano, D., Salas, S., Monroy-García, C., Dreyfus-León, M., & Torrres-Irineo, E. (2023). Identifying fisheries operations in tropical multispecies fisheries: A comparative analysis of multivariate approaches and neural networks. Fisheries Research, 263. https://doi.org/10.1016/J.FISHRES.2023.106692

Ranjan, R., Sharrer, K., Tsukuda, S., & Good, C. (2023). Effects of image data quality on a convolutional neural network trained in-tank fish detection model for recirculating aquaculture systems. Computers and Electronics in Agriculture, 205. https://doi.org/10.1016/J.COMPAG.2023.107644

Rezende-de-Souza, J. H., de Moraes-Neto, V. F., Cassol, G. Z., Camelo, M. C. dos S., & Savay-da-Silva, L. K. (2022). Use of colorimetric data and artificial neural networks for the determination of freshness in fish. Food Chemistry Advances, 1. https://doi.org/10.1016/J.FOCHA.2022.100129

Shi, C., Ji, Z., Yang, X., Jia, Z., Dong, R., & Shi, G. (2022). Nondestructive determination of the freshness change in bighead carp heads under variable temperatures by using excitation-emission matrix fluorescence and back-propagation neural networks. Journal of Future Foods, 2(2), 160–166. https://doi.org/10.1016/J.JFUTFO.2022.03.009

Tokunaga, K., Saeki, C., Taniguchi, S., Nakano, S., Ohta, H., & Nakamura, M. (2020). Nondestructive evaluation of fish meat using ultrasound signals and machine learning methods. Aquacultural Engineering, 89. https://doi.org/10.1016/J.AQUAENG.2020.102052

Triwibowo, M. I., & Sela, E. I. (2023). Implementasi Extreme Learning Machine untuk Pengenalan Jenis Sepatu. Smart Comp: Jurnalnya Orang Pintar Komputer, 12(4), 1098–1108.

Tsai, W. P., Huang, S. P., Cheng, S. T., Shao, K. T., & Chang, F. J. (2017). A data-mining framework for exploring the multi-relation between fish species and water quality through self-organizing map. Science of the Total Environment, 579, 474–483. https://doi.org/10.1016/J.SCITOTENV.2016.11.071

Wang, Y., Yu, X., Liu, J., An, D., & Wei, Y. (2022). Dynamic feeding method for aquaculture fish using multi-task neural network. Aquaculture, 551. https://doi.org/10.1016/J.AQUACULTURE.2022.737913

Wanti, E. P. (2021). Wanti, E. P. (2021). Pengidentifikasian Citra Ikan Berformalin dengan Menggunakan Metode Multilayer Perception .

Yang, G., Ma, J., Deng, Y., Sun, S., Fu, B., & Fathi, G. (2022). Blackbox-based model identification of solid oxide fuel cells by hybrid Ridgelet neural network and Enhanced Fish Migration Optimizer. Energy Reports, 8, 14820–14829. https://doi.org/10.1016/J.EGYR.2022.11.020

Downloads

Published

2023-11-16