Labor Income in DIY During The Covid-19 Pandemic

Authors

  • Mustofa Mustofa Department of Economics Education, Faculty of Economics, Universitas Negeri Yogyakarta, Indonesia

DOI:

https://doi.org/10.46799/ijssr.v2i7.134

Keywords:

income, labor, digital, Covid-19

Abstract

This article discusses workers' income in the Special Region of Yogyakarta (DIY) during the covid-19 pandemic. The data source used by Sakernas DIY for the August 2021 period with a selected sample of 4,029 workers. The analysis technique used is a regression analysis technique. The results showed that labour income during the Covid-19 period was influenced by education level, work experience, gender, marital status, job training, number of hours worked, digital devices, and work status, with a total effect of 40.5%. Workers with higher levels of education have better earnings. Workers who are equipped with job training have higher earnings. The number of hours affects income positively and significantly. Workers who use digital devices have higher incomes. Self-employment has a negative influence on income during a pandemic.

References

Agustiana, L. E. (2020). Pengaruh Wabah Covid-19 Terhadap Tingkat Pengangguran Terbuka Pada Sektor Terdampak Di Indonesia. Jurnal Ilmu Manajemen Terapan, 1(6), 546–556. Google Scholar

Ahmed, N., Marriott, A., Dabi, N., Lowthers, M., Lawson, M., & Mugehera, L. (2022). Inequality Kills The unparalleled action needed to combat unprecedented inequality in the wake of COVID-19. Google Scholar

Aisyah, S., & Rahman, A. (2022). Karakteristik sosial ekonomi dan demografi yang mempengaruhi remitan pekerja migran. KINERJA, 19(1), 1–14. Google Scholar

Arndt, C., Davies, R., Gabriel, S., Harris, L., Makrelov, K., Robinson, S., … Anderson, L. (2020). Covid-19 lockdowns, income distribution, and food security: An analysis for South Africa. Global Food Security, 26, 100410. Google Scholar

Brickhill-Atkinson, M., & Hauck, F. R. (2021). Impact of COVID-19 on resettled refugees. Primary Care: Clinics in Office Practice, 48(1), 57–66. Google Scholar

Del Rey, E., Naval, J., & Silva, J. I. (2022). Hours and wages: A bargaining approach. Economics Letters, 110652. Google Scholar

Denning, J. T., Jacob, B. A., Lefgren, L. J., & Vom Lehn, C. (2019). The return to hours worked within and across occupations: implications for the gender wage gap. ILR Review, 00197939211045376. Google Scholar

Forum, W. E. (2018). 2018 The Global Gender Gap Report. Google Scholar

Galasso, V. (2020). COVID: Not a great equalizer. CESifo Economic Studies, 66(4), 376–393. Google Scholar

Gallant, J., Kroft, K., Lange, F., & Notowidigdo, M. J. (2020). Temporary unemployment and labour market dynamics during the COVID-19 recession. National Bureau of Economic Research. Google Scholar

Goma, E. I. (2021). Dampak Covid-19 Terhadap Isu Kependudukan di Indonesia. Geodika: Jurnal Kajian Ilmu Dan Pendidikan Geografi, 5(1), 33–42. Google Scholar

Graetz, G., & Michaels, G. (2018). Robots at work. Review of Economics and Statistics, 100(5), 753–768. Google Scholar

Hendajany, N., & Rizal, D. (2020). Ketimpangan Penghasilan Berdasarkan Status Pekerjaan dalam Model Imbal Jasa Pendidikan. Jurnal Ekonomi Dan Pembangunan Indonesia, 20(2), 133–145. Google Scholar

Horwitz, I. M., & Lascar, S. (2021). Ties in Tough Times: How social capital helps lower-income Jewish parents weather the economic hardship of COVID-19. Contemporary Jewry, 41(1), 161–183. Google Scholar

ILO. (2017). Global Wage Report 2016/17: Wage inequality in the workplace. In Just Labour: A Canadian Journal of Work and Society. Google Scholar

Indayani, S., & Hartono, B. (2020). Analisis pengangguran dan pertumbuhan ekonomi sebagai akibat pandemi covid-19. Jurnal Perspektif, 18(2), 201–208. Google Scholar

Indonesia, B. (2022). Laporan Perekonomian Daerah Istimewa Yogyakarta. Google Scholar

Kasnelly, F. A. J. S. (2020). Meningkatnya Angka Pengangguran Ditengah Pandemi (Covid-19). Al-Mizan: Jurnal Ekonomi Syariah, 3(1), 45–60. Google Scholar

Kaur, M., Goyal, P., & Goyal, M. (2020). Individual, interpersonal and economic challenges of underemployment in the wake of COVID-19. Work, 67(1), 21–28. Google Scholar

McKibbin, W. J., & Fernando, R. (2020). The Global Macroeconomic Impacts of COVID-19: Seven Scenarios. SSRN Electronic Journal, 8. Google Scholar

Milani, F. (2021). COVID-19 outbreak, social response, and early economic effects: a global VAR analysis of cross-country interdependencies. Journal of Population Economics, 34(1), 223–252. Google Scholar

Ningsih, N. L. P. Y. S., & Dokhi, M. (2021). Determinant of Labor Force Resilience Against The Employment Impact of The Covid-19 Pandemic in Bali Province, Indonesia: An Application of Survival Analysis. Proceedings of The International Conference on Data Science and Official Statistics, 2021(1), 771–781. Google Scholar

Ozili, P., & Arun, T. (2020). Spillover of COVID-19: Impact on the Global Economy. Online at Https://Mpra. Ub. Uni-Muenchen. de/99850/MPRA Paper, (99850). Google Scholar

Pirmana, V. (2006). Earnings differential between male-female in Indonesia: Evidence from Sakernas data. Departement of Economics. Bandung: Padjajaran University. Google Scholar

Prayogo, F., & Suprayogi, N. (2019). Perbandingan Tingkat Penghasilan Antara Laki-laki Lajang Dan Laki-laki Menikah Perspektif Islam (Studi Pada Penduduk Laki-laki Indonesia Berdasarkan Data Indonesian Family Life Survey Tahun 2007 Dan 2014). Jurnal Ekonomi Syariah Teori Dan Terapan, 6(3), 411–427. Google Scholar

Sicherman, N., & Galor, O. (1990). A theory of career mobility. Journal of Political Economy, 98(1), 169–192. Google Scholar

Simanjuntak, P. J. (1998). Pengantar Ekonomi Sumber Daya Manusia LPFE. Jakarta. Google Scholar

Sohn, K. (2015). Gender discrimination in earnings in Indonesia: A fuller picture. Bulletin of Indonesian Economic Studies, 51(1), 95–121. Google Scholar

Statistic, C. S. A. [BPS]. (2021). Berita resmi statistik (Issue 27, pp. 1–52). Retrieved from Bps.Go.Id Google Scholar

Takasaki, Y. (2017). Do natural disasters decrease the gender gap in schooling? World Development, 94, 75–89. Google Scholar

Tambunan, T. T. H. (2021). Covid-19 Pandemic and Severity of Economic Impacts: The Indonesian Case. Global Economics Science, 1–15. Google Scholar

Triany, N. H. (2021). Determinants of Commuter Worker Income in South Sulawesi during the Covid-19 Pandemic. Populasi, 29(2), 76–87. Google Scholar

Downloads

Published

2022-07-23