

Analysis of the Impact of Electric Charging Infrastructure Provision Rules on the Calculation of Fast and Ultrafast Charging Service Costs at Time Base and Energy Base Charging Stations

Yundi Haekal Azizi, Hakimul Batih

Electrical Engineering, PLN Institute of Technology, Indonesia						
Email: yundi211000	4@itpln.ac.id, hakimul.batih@itpln.ac.id					
Keywords	ABSTRACT					
Surcharge Fee, Charging Station, Fast Charging, Ultrafast Charging, Time Base, Energy Base	This study aims to analyze the impact of the issuance of MEMR Regulation Number 1 of 2023 concerning the Provision of Electric Charging Infrastructure for Battery- Based Electric Motor Vehicles, especially focusing on provisions related to electricity tariffs on surcharge fees for KBLBB fast charging and ultrafast charging consumers/customers. The calculation of surcharge fees can be economically affected by investment costs, operational costs, electric vehicle volume, and charging energy per electric vehicle (EV), so this study on surcharge fees is calculated using several scenarios and simulations carried out. The scenario is based on investment costs and operational costs using high and low cost financing calculations, and the simulation in question is on the volume of energy and electric vehicles over the next 15 years with pessimistic, moderate and optimistic simulations. This study uses quantitative descriptive methods that aim to describe or descriptive about a situation objectively using numbers, starting from data collection, interpretation through analysis of the data and appearance and results. The results of calculations from scenarios and simulations that have been carried out, calculations that are close to economics and based on current conditions that low cost scenarios with moderate simulations are appropriate recommendations to be applied at this time. Of course, the amount of application of the service fee must be evaluated by the Government every year, because the calculation component greatly affects the amount of the service fee.					

INTRODUCTION

Currently, the growth of motor vehicles nationally has increased every year. Based on data from the Central Statistics Agency in 2022, motor vehicles in Indonesia from 2013 to 2021 experienced an average growth of 4.1%. Data shows that in 2021 the number of motorized vehicles reached 143.8 million vehicles with details of 121.2 million two-wheeled vehicles and as many as 22.6 million four-wheeled vehicles (passenger cars, buses, and freight cars).

Figure 1 Growth in the Number of National Motor Vehicles 2013-2021

The growth of motor vehicles nationally is closely related to the consumption of Fuel Oil (BBM). In 2022, the subsidized fuel quota in the State Budget is 23.1 million kL of petralite and 15.1 million kL of diesel. The subsidized fuel quota has exceeded the quota budgeted by the Government at the end of 2022, with the realization of petralite of 29.9 million kL and diesel of 17.8 million kL, so that the average use of petralite is around 2.5 million kL/month and diesel is around 1.5 million kL/month.

Figure 2 Realization and Projections of National Fuel Needs in 2022

Along with the times and paying attention to global issues and considering that the transportation sector has the largest portion of national fuel consumption, the transportation sector is the focus of the government's current priority to increase the use of environmentally sustainable energy, one of which is electric vehicles which will have an impact on increasing electricity needs. In addition, Indonesia in COP 21 Climate Change Conference Paris 2015 is committed globally to maintain temperature increases not exceeding 2 C, nationally reduce GHG emissions by 29% from BaU (own capabilities) or 41% (with international assistance) by 2030 according to NDC, and to the energy sector commitment to reduce GHG emissions by 314 – 398 million tons of CO2 by 2030 and Net Zero Emissions in 2060 or sooner, through the development of renewable energy, the implementation of energy efficiency, and energy conservation, as well as the application of clean energy technology.

Technological developments in the transportation sector, one of which is Electric Motor Vehicles (KBL), are projected to increase electricity demand significantly progressively. The Government's seriousness in accelerating KBL is with the issuance of Presidential Regulation Number 55 of 2019 concerning the Acceleration of the Battery-Based Electric Motor Vehicle Program (KBLBB) for Road Transportation, the Government fully supports the observance of KBL in Indonesia. This

development must also be supported by adequate infrastructure in the form of Public Electric Vehicle Charging Stations (SPKLU). The government as a regulator supports the development of the electricity business in accordance with the Electricity Supply Business Plan (RUPTL) of PT PLN (Persero) for 2021-2030.

As a derivative of Presidential Regulation Number 55 of 2019, the Ministry of Energy and Mineral Resources (ESDM) through ESDM Minister Regulation Number 1 of 2023 concerning the Provision of Electric Charging Infrastructure for Battery-Based Electric Motor Vehicles, as the legal basis for the SPKLU and SPBKLU business, in this regulation regulated the provisions of the Electricity business, electricity tariffs, electricity standards and safety of SPKLU and SPBKLU.

In the Regulation of the Minister of Energy and Mineral Resources Number 1 of 2023, there are 3 (three) parts of the regulation of electricity tariffs at SPKLU, namely: a) Electricity tariffs from PLN to Business Entities (Upstream), are subject to bulk tariffs (20 kV Medium Voltage) of Rp. 714/kWh or charged with special service rates (Low Voltage) of Rp. 1,650/kWh with a coefficient of N = 1. b) Electricity tariff to consumers / customers of KBLBB (Downstream), charged to consumers from SPKLU Business Entities is a maximum of Rp. 2,467 / kWh, for slow, medium, fast, and ultrafast charging technology. c) Service fees for KBLBB fast and ultrafast charging consumers / customers (not yet further regulated the amount imposed in the Decree of the Minister of Energy and Mineral Resources)

Therefore, this study focuses on provisions related to electricity tariffs on service costs for KBLBB fast and ultrafast charging consumers/customers, by calculating economically against investment and operational costs, as well as projections for the next 15 (fifteen) years on the development of electric vehicle volume and charging energy per electric vehicle (EV) with scenarios and simulations based on data collected. By getting a service fee for fast and ultrafast charging technology, it can also be seen that the concept of Energy Base or Time Base is the most appropriate to do in Indonesia.

METHODS

The data collection method is carried out to collect and retrieve the necessary data, including through primary data, secondary data, or other methods. Assumptions and parameters to obtain the results of the calculation of service costs and the calculation of energy base and time base are with data needs, including: a) Investment costs in the form of prices from the formation of charging stations such as unit charging costs, shelter construction costs, new installation costs, other administrative costs. b) Operational costs such as maintenance costs, land rental costs, telecommunication costs, electricity purchase costs. c) other data needed are the comparison of electric car batteries, warranty or operating life of a product due to the relationship between the warranty and the investment financing scheme for 15 years, and data on the realization of use or transactions at charging stations with the national average.

The data sources used in this study are based on primary and secondary data, with the following data details:

Primary data; 1) Sampling of realization data at SPKLU at the Office of the Directorate General of Electricity of the Ministry of Energy and Mineral Resources, PT PLN (Persero) Distribution of Jakarta Raya and Tangerang, and PT PLN (Persero) Head Office. 2) Interviews with staff and officials at the Office of the Directorate General of Electricity, Ministry of Energy and Mineral Resources and PT PLN (Persero).

Secondary Data; 1) Details of investment costs such as unit charging costs, shelter costs, new installation costs, SLO costs with data from Business Entities, PT PLN (Persero), Enhancing Readiness for The Transition to Electric Vehicles (ENTREV), and public hearing results. 2) Details of operational costs such as maintenance costs, land rental costs, telecommunication costs, electricity purchase costs with data from Business Entities, PT PLN (Persero) and Enhancing Readiness for The Transition to Electric Vehicles (ENTREV), and public hearing results. 3) Other required data such as Inflation, electricity tariffs, Public Street Lighting Tax, Purchase Electricity Tariffs, operating life, and other data based on the results of public consultations, interviews, in Government Regulations, digital data disbursement, relevant studies, and other methods.

Yundi Haekal Azizi, Hakimul Batih

Data analysis is the result of calculating service costs using high cost and low cost scenarios, as well as projections of energy volume and EV volume with pessimistic, moderate, and optimistic simulations. The results of the analysis provide input from assumptions and calculations that are affected by service costs in addition to also affecting the calculation of energy base and time base. Data analysis methods used to process data and analyze data are:

Data Processing Methods

SPKLU rates for fast and ultrafast charging technology are determined by the components of investment costs, operational costs, the number of electric vehicles and the amount of energy. The component is calculated using an IRR of 15% which assumes the loan interest rate reaches 12% and the income of the Business Entity (10%-15%) so as to get the Net Benefit value as the equation (2.2.) used in the theoretical basis.

With the large amount of data obtained in the study, the data for investment costs and operational costs are categorized into high cost and low cost, as well as calculation simulations for the number of EVs and energy in the form of pessimistic, moderate, and optimistic simulations.

A hypothesis testing tool that uses an excel program by entering data components obtained by calculating using equations. The hypothesis of this study is that with the additional investment and operations, the tariff should be on fast and ultrafast charging technology charging stations will exceed the tariff set in the Ministerial Regulation or >Rp2,467 / kWh, so that the difference in the cost of the load is replaced with service costs in one charge. The following is the hypothesis testing process that will be carried out in this study to obtain service fees:

Figure 3 Service fee calculation process

With provisional data obtained from PT PLN (Persero) that currently using investment costs and operational costs to charge electric vehicles one charge requires Rp3,125 / kWh (16.9 kWh per transaction) for fast charging technology charging stations and Rp3,798 / kWh (18.6 kWh per transaction) for ultrafast charging charging stations. So that the temporary calculation service fee is as follows:

In accordance with the formula above, the amount of service fees obtained is as follows:

a. SPKLU *fast charging* Service Fee = (3.125 - 2.467) x 16,9 = Rp11.120
b. SPKLU *ultrafast charging*

Service Fee = $(3.798 - 2.467) \times 18,6 = \text{Rp}24.757$ The result of the service fee is the calculation of the upper limit, therefore the result of each calculation of the time base or energy base at the charging station does not exceed what is calculated in the equation (3.1.). The calculation of time base or energy base at fast and ultrafast charging stations can be formulated with the following equation:

a. Time Base

Time Base = $\frac{Service Fee_{calculation}}{time}$ (3.2) Service Fee $_{Time Base}$ = Time Base x (n)waktu (3.3)

b. Energy Base

Energy Base = $\frac{Biaya \ layanan \ perhitungan}{kWh \ rata-rata}$ (3.4) Service Fee $_{Energy \ Base}$ = Energy Base x (n)kWh ... (3.5)

RESULTS AND DISCUSSION

By doing a calculation analysis to get the value of the SPKLU tariff should be (Rp/kWh) for fast and ultrafast charging technology in each high cost and low cost scenario as well as pessimistic, moderate and optimistic simulations with a 15 year operating period. Furthermore, in order to be able to calculate service costs, the difference between the coefficients applied by Business Entities to consumers is required with the difference from the SPKLU tariff that should be the PT PLN (Persero) rate for Business Entities which has been regulated in the Minister of Energy and Mineral Resources Regulation Number 1 of 2023. The following is the calculation result from the calculation analysis to get the service fee in each scenario and the simulation that has been carried out:

	Fast Charging							
Uraian		High Cost		Low Cost				
	Pesimis	Moderat	Optimis	Pesimis	Moderat	Optimis		
Tarif SPKLU Regulasi (Rp/kWh)	1.645	1.645	1.645	1.645	1.645	1.645		
Tarif SPKLU Seharusnya (Rp/kWh)	4.425	3.693	3.295	3.718	3.176	2.882		
Faktor N	2,69	2,25	2,00	2,26	1,93	1,75		
Kelebihan N (1,5)	1,19	0,75	0,50	0,76	0,43	0,25		
Tarif Kelebihan N (Rp/kWh)	1.958	1.226	829	1.251	710	415		
Rata-Rata Energi (kWh)	19	21	23	19	21	23		
Biaya Layanan (Rp)	37.035	25.816	18.881	23.661	14.937	9.453		
Biaya Layanan + PPN 11% (Rp)	41.109	28.656	20.958	26.264	16.580	10.492		
IRR (%)	15%	15%	15%	15%	15%	15%		
PBP (tahun)	7,26	7,05	6,87	7,32	7,10	6,94		

 Table 1

 Calculation of fast charging service fees

Table 2Ultrafast charging service fee calculation

	Ultrafast Charging							
Uraian		High Cost		Low Cost				
	Pesimis	Moderat	Optimis	Pesimis	Moderat	Optimis		
Tarif SPKLU Regulasi	1 6 4 5	1 6 4 5	1 6 4 5	1 615	1 6 4 5	1 6 4 5		
(Rp/kWh)	1.045	1.043	1.045	1.045	1.045	1.043		
Tarif SPKLU Seharusnya	6.022	5 506	4 720	5 146	4 2 1 0	2 717		
(Rp/kWh)	0.922	6.922 5.506		5.140	4.219	3./1/		
Faktor N	4,21	3,35	2,88	3,13	2,57	2,26		
Kelebihan N (1,5)	2,71	1,85	1,38	1,63	1,07	0,76		
Tarif Kelebihan N (Rp/kWh)	4.455	3.039	2.272	2.679	1.752	1.250		
Rata-Rata Energi (kWh)	19	21	23	19	21	23		
Biaya Layanan (Rp)	84.253	63.971	51.764	50.661	36.876	28.480		
Biaya Layanan + PPN 11%	02 520	71.000	57 450	56 004	40.022	21 (12		
(Rp)	93.520	/1.008	57.458	56.234	40.932	31.612		
IRR (%)	15%	15%	15%	15%	15%	15%		
PBP (tahun)	7,19	6,99	6,81	6,81	7,04	6,86		

Calculation of Time Base

Service fees that have been obtained for each SPKLU of fast and ultrafast charging technology in each high cost and lowcost scenario as well as pessimistic, moderate and optimistic simulations become a recommendation for the upper limit in the application of Energy Base by Business Entities in the future. The time base recommendation referred to is the average use of time for each technology used (fast or ultrafast charging) with conversion in the form of units of Rp/time. So that the cost of time base services is the length of time each customer fills it as in equations (3.2) and (3.3.).

Using references to the Literature Review in table 2 and references to primary and secondary data results as table 4.3 below that level 3 charging (fast charging) requires a charging time of \pm 30 minutes – 1 hour and level 4 (ultrafast charging) requires a charging time of \pm 15 minutes – 30 minutes.

	••			
Deskripsi	Level 1 (Pengisian Lambat/ Slow Charging)	Level 2 (Pengisian Menengah/ Medium Charging)	Level 3 (Pengisian Cepat/ Fast Charging)	Level 4 (Pengisian Sangat Cepat/ Ultra Fast Charging)
Lokasi	Instalasi Khusus (Rumah)	Instalasi Khusus (Kantor)	SPKLU (Stasiun Pengisian)	SPKLU (Stasiun Pengisian)
Arus Keluaran Maksimum (A)	16 AC	63 AC	100 AC/250 DC	300 AC/500DC
Daya Keluaran (kW)	≤ 7 kW	≤ 22 kW	≤ 50 kW	> 50 kW
Jenis Konektor Plug-in	Tipe 2 (IEC 62196-2)		Tipe 2 (IEC 62196-2) Tipe Pengisian Gabungan (Combined Charging Type) CCS dan Chademo (IEC 62196-3)	
Waktu Pengisian ^{*)}	± 8 jam	± 2 – 4 jam	± 30 menit – 1 jam	± 15 – 30 menit

Table 3Calculation of ultrafast charging service fee

Using equations (3.2.) and (3.3.) the result of the time base calculation is:

Table 4

Fast charging time base service fee calculation

	Fast Charging						
Uraian		High Cost		Low Cost			
	Pesimis	Moderat	Optimis	Pesimis	Moderat	Optimis	
Biaya Layanan (Rp)	37.035	25.816	18.881	23.661	14.937	9.471	
Biaya Layanan (Rp) + PPN 11%	41.109	28.656	20.958	26.264	16.580	10.513	
Maksimal Charging (menit)	60	60	60	60	60	60	
Biaya Layanan Time Base (Rp/menit)	617	430	315	394	249	158	
10 menit (Rp)	6.172	4.303	3.147	3.944	2.490	1.575	
30 menit (Rp)	18.517	12.908	9.440	11.831	7.469	4.726	
60 menit (Rp)	37.035	25.816	18.881	23.661	14.937	9.453	

Table 5 Ultrafast charging time base service fee calculation

	Ultrafast Charging							
Uraian		High Cost		Low Cost				
	Pesimis	Moderat	Optimis	Pesimis	Moderat	Optimis		
Biaya Layanan (Rp)	84.253	63.971	51.764	50.661	36.876	28.480		
Biaya Layanan (Rp) + PPN 11%	93.520	71.008	57.458	56.234	40.932	31.612		
Maksimal Charging (menit)	30	30	30	30	30	30		
Biaya Layanan Time Base (Rp/menit)	2.808	2.843	2.301	2.252	1.639	1.266		
10 menit (Rp)	28.084	28.431	23.006	22.516	16.389	12.658		
30 menit (Rp)	84.253	63.971	51.764	50.661	36.876	28.480		
60 menit (Rp)	-	-	-	-	-	-		

Energy Base Calculation

Just like the calculation of the time base, the service costs that have been obtained at each fast and ultrafast charging technology charging station in each high cost and low cost scenario as well as pessimistic, moderate and optimistic simulations become an upper limit recommendation in the application of Energy Base by Business Entities later. The energy base recommendation in question is the average use of battery capacity with conversion in the form of per unit Rp/kWh. So the cost of energy base services is an energy base with purchases in each kWh by consumers as equations (3.4.) and (3.5.). Currently, there are no battery standards set by the Government of Indonesia for the minimum and maximum capacity installed in electric cars to be able to measure energy base usage. Another reference is to find the comparison value of electric car batteries with existing brands in Indonesia, with an average battery value of 50 kWh, along with the references obtained:

	*) Pengisian baterai dari 20% ke 100
Merk	Kapasitas Baterai
Tesla Model S	100
Tesla Model 3	50-75
Lexus UX 300e	54,3
Nissa Leaf	40
BMW i4	80
BMW iX	70
Toyota C + POD EV	9,06
Wuling	17,3-26,7
Ioniq	38,3
Kona	39,2
Rata-Rata	50

Table 6						
Brand and capacity of electric car batteries in Indonesia						

Using equations (3.4.) and (3.5.) the result of calculating the energy base is:

	Fast Charging								
Uraian		High Cost		Low Cost					
	Pesimis	Moderat	Optimis	Pesimis	Moderat	Optimis			
Biaya Layanan (Rp)	37.035	25.816	18.881	23.661	14.937	9.471			
Biaya Layanan (Rp) + PPN 11%	41.109	28.656	20.958	26.264	16.580	10.513			
Rata-Rata Kapasitas Baterai (kWh)	50	50	50	50	50	50			
Biaya Layanan Energy Base (Rp/kWh)	741	516	378	473	299	189			
10 kWh (Rp)	7.407	5.163	3.776	4.732	2.987	1.894			
30 kWh (Rp)	22.221	15.490	11.329	14.197	8.962	5.683			
50 kWh (Rp)	37.035	25.816	18.881	23.661	14.937	9.471			

Table 7Fast charging energy base service fee calculation

	Table 8			
Calculation of ultrafast	charging	energy	base service	fee

	Ultrafast Charging						
Uraian		High Cost		Low Cost			
	Pesimis	Moderat	Optimis	Pesimis	Moderat	Optimis	
Biaya Layanan (Rp)	84.253	63.971	51.764	50.661	36.876	28.480	
Biaya Layanan (Rp) + PPN 11%	93.520	71.008	57.458	56.234	40.932	31.612	
Rata-Rata Kapasitas Baterai (kWh)	50	50	50	50	50	50	
Biaya Layanan Energy Base (Rp/kWh)	1.685	1.279	1.035	1.013	738	570	
10 kWh (Rp)	16.851	12.794	10.353	10.132	7.375	5.696	
30 kWh (Rp)	50.552	38.382	31.058	30.397	22.125	17.088	
50 kWh (Rp)	84.253	63.971	51.764	50.661	36.876	28.480	

The Effect of IRR on the Amount of Electric Vehicle Tariffs

To facilitate the value needs of a project, sensitivity analysis is needed in order to see what happens with project analysis, if there is a change in the basis of calculating costs and benefits. In table 4.9 and table 4.10, sensitivity is obtained related to IRR with electric vehicle tariffs for fast and ultrafast charging technology charging stations, that every change in IRR by 2% affects the amount of electric vehicle tariffs and also affects the mass of the pay back period. The following are the results of IRR sensitivity to electric vehicle tariffs: **Table 9**

Fast Charging (Rp) dan (PBP)										
Skonorio	Simulasi		IRR (%)							
Skellario	Sinuasi	11,0	13,0	15,0	17,0	19,0				
	Desimis	3.870	4.135	4.425	4.734	5.061				
	Pesimis	(8,32)	(7,75)	(7,26)	(6,74)	(6,12)				
High Cost	Moderat	3.300	3.485	3.693	3.911	4.138				
		(8,14)	(7,56)	(7,05)	(6,41)	(5,86)				
	Optimis	2.989	3.133	3.295	3.464	3.638				
		(8,03)	(7,44)	(6,87)	(6,24)	(5,71)				
	Pesimis	3.339	3.516	3.718	3.929	4.148				
		(8,36)	(7,81)	(7,32)	(6,83)	(6,20)				
Larry Cast	Madamat	2.907	3.033	3.176	3.324	3.478				
Low Cost	Moderat	(8,18)	(7,61)	(7,10)	(6,48)	(5,92)				
	Ontinuia	2.673	2.771	2.882	2.994	3.115				
	Optimis	(8,06)	(7,48)	(6,94)	(6,30)	(5,76)				

IRR sensitivity to electric vehicle tariffs on fast charging

	IRR sensitivity to electric vehicle rates on ultrafast charging									
	Ultrafast Charging									
	(Rp) dan (PBP)									
Skonaria	Simulaci			IRR (%)						
Skenario	Simulasi	11,0	13,0	15,0	17,0	19,0				
	Desimis	5.763	6.302	6.922	7.566	8.231				
	resinns	(8,26)	(7,69)	(7,19)	(6,62)	(6,04)				
High Cost	Moderat	4.666	5.066	5.506	5.942	6.430				
rigii Cost		(8,12)	(7,51)	(6,99)	(6,37)	(5,81)				
	Optimis	4.088	4.397	4.739	5.081	5.455				
		(8,01)	(7,40)	(6,81)	(6,20)	(5,67)				
	Desimis	4.426	4.773	5.146	5.545	5.974				
	resinns	(8,32)	(7,74)	(7,25)	(6,72)	(6,10)				
Low Cost	Moderat	3.707	3.951	4.219	4.500	4.798				
Low Cost	Widderat	(8,14)	(7,55)	(7,04)	(6,40)	(5,85)				
	Ontimis	3.318	3.505	3.717	3.934	4.162				
	Opums	(8,02)	(7,43)	(6,86)	(6,23)	(5,70)				

Table 10 IRR sensitivity to electric vehicle rates on ultrafast charging

Effects of IRR on Service Fees

Regarding service fees as costs that will be incurred by consumers later, it can be seen in table 11 and table 12 there are sensitivity results related to IRR with the service costs of each fast and ultrafast charging technology charging station, that every change in IRR by 2% affects the amount of service fee tariffs and also affects the mass pay back period. Here are the results of IRR sensitivity to service fees:

	Fast Charging											
	C !l!			IRR (%)	IRR (%)							
Skenario	Simulasi	11,0	13,0	15,0	17,0	19,0						
	Desimis	26.358	31.549	37.035	42.877	49.062						
	resinits	(8,32)	(7,75)	(7,26)	(6,74)	(6,12)						
High Cost	Madarat	17.539	21.433	25.186	30.400	35.178						
High Cost	Moderat	(8,14)	(7,56)	(7,05)	(6,41)	(5,86)						
	Optimis	11.899	15.181	18.881	22.723	26.688						
		(8,03)	(7,44)	(6,87)	(6,24)	(5,71)						
	Desimis	16.495	19.843	23.661	27.653	31.795						
	Pesimis	(8,36)	(7,81)	(7,32)	(6,83)	(6,20)						
Larry Cast	Madanat	9.226	11.919	14.937	18.044	21.286						
Low Cost	Moderat	(8,18)	(7,61)	(7,10)	(6,48)	(5,92)						
	Ontinuia	4.699	6.932	9.453	12.013	14.770						
	Opumis	(8,06)	(7,48)	(6,94)	(6,30)	(5,76)						

Table 11IRR sensitivity to service charges on fast charging

Table 12
IRR sensitivity to service charges on ultrafast charging

		Ultraj	fast Charging	5					
Skanaria	Simulasi	IRR (%)							
Skenario	Simulasi	11,0	13,0	15,0	17,0	19,0			
	Desimis	62.338	72.531	84.253	96.436	109.012			
	resinns	(8,26)	(7,69)	(7,19)	(6,62)	(6,04)			
High Cost	Madarat	46.292	54.712	63.971	73.151	83.423			
High Cost	Moderat	(8,12)	(7,51)	(6,99)	(6,37)	(5,81)			
	Optimis	36.941	43.982	51.764	59.568	68.090			
		(8,01)	(7,40)	(6,81)	(6,20)	(5,67)			
	Dogimig	37.053	43.615	50.661	58.215	66.328			
	resinns	(8,32)	(7,74)	(7,25)	(6,72)	(6,10)			
Low Cost	Moderat	26.106	31.242	36.876	42.798	49.071			
Low Cost	wiouerat	(8,14)	(7,55)	(7,04)	(6,40)	(5,85)			
	Ontimia	19.396	23.567	28.480	33.432	38.628			
	Optimis	(8,02)	(7,43)	(6,86)	(6,23)	(5,70)			

Comparison of Fuel Car Savings with Electric Vehicle

It is necessary to compare the cost of fuel cars with electric cars to find out the benefits that will be felt by the community later. Comparison using assumptions and consumption of fuel and electricity obtained from the Ministry of Energy and Mineral Resources. The following assumptions and calculation results are used for potential savings in comparison of fuel cars with electric cars using low cost scenarios and moderate simulations of each fast and ultrafast charging station:

Yundi Haekal Azizi, Hakimul Batih

Item		Nilai	Satuan	
Asumsi Jarak Tempuh Per Bular	n	1.250	km/bulan	
Asumsi Konsumsi BBM	10	km/Liter		
Kebutuhan BBM Per Bulan	125	Liter/Bulan		
Asumsi Harga Bahan Bakar		15.000	Rp/Liter	
Biaya BBM	1.875.000	Rp/Bulan		
Kebutuhan Energi Per Bulan		187,69	kWh/Bulan	
Tarif Listrik SPKLU _{regulasi}		2.467	Rp/kWh	
Direct Leven and LDDNI 110/	FastLow Cost, Moderat	16.580	Rp/Pengisian	
Biaya Layanan + PPN 11%	UltrafastLow Cost, Moderat	40.932	Rp/Pengisian	
Biaya Listrik SPKLU	FastLow Cost, Moderat	628.826	Rp/Bulan	
(Asumsi 10 kali pengisian)	UltrafastLow Cost, Moderat	872.349	Rp/Bulan	
Penghematan Biaya Listrik	FastLow Cost, Moderat	66%	%	
Terhadap BBM	UltrafastLow Cost, Moderat	53%	%	

Table 13Calculation of fuel car savings with electric cars

Sensitivity of Fuel Saving Cars with Electric Vehicles to IRR

In order for the calculation value to get one point of equal IRR on the sensitivity of electric vehicle tariffs and service costs with fuel savings for fuel cars with electric car comparisons, sensitivity is needed. The following is the sensitivity of savings from each scenario and simulation carried out on saving fuel cars with electric vehicles:

 Table 14

 Sensitivity savings with IRR highcost scenarios simulated pessimists

No	Skanaria High Cost Sim	Catuan	IRR					
NO	Skenario High Cost, Sinn		asi resimis Satuan		13%	15%	17%	19%
1	I Biaya Layanan	Fast		26.358	31.549	37.035	42.877	49.062
1		UltraFast	Pp/Popaisian	62.338	72.531	84.253	96.436	109.012
2	2 Bigua Layanan + PPN 119	Fast	Kp/i engisiun	29.257	35.019	41.109	47.593	54.459
2		UltraFast		69.195	80.509	93.521	107.044	121.003
3	Biaya Listrik SPKLU	Fast	Pp/Pulan	755.599	813.219	874.114	938.960	1.007.614
5	(Asumsi 10 kali pengisian/bulan)	UltraFast	крувошт	1.154.977	1.268.120	1.398.234	1.533.465	1.673.059
4	Penghematan Biaya Listrik	Fast	97	60%	57%	53%	50%	46%
4	terhadap BBM	UltraFast	/0	38%	32%	25%	18%	11%

 Table 15

 Sensitivity savings with IRR highcost simulation scenarios are moderate

No	Skonaria High Cost, Simu	Satuan	IRR					
NO	Skellario High Cost, Silitu		Satuan	11%	13%	15%	17%	19%
1	Biavalayanan	Fast		17.539	21.433	25.186	30.400	35.178
1	Bidyd Edydrian	UltraFast	Rp/Pengisian	46.292	54.712	63.971	73.151	83.423
2	2 Rigua Layanan + PPN 119	Fast		19.468	23.791	27.956	33.744	39.048
2 Bi	Bidyd Edydrian + FFN 11%	UltraFast		51.384	60.730	71.008	81.198	92.600
3	Biaya Listrik SPKLU	Fast	Pp/Pulan	657.708	700.932	742.590	800.466	853.501
5	(Asumsi 10 kali pengisian/bulan)	UltraFast	крувоют	976.867	1.070.329	1.173.104	1.275.002	1.389.021
4	Penghematan Biaya Listrik	Fast	a	65%	63%	60%	57%	54%
4	terhadap BBM	UltraFast	/0	48%	43%	37%	32%	26%

 Table 16

 Sensitivity savings with IRR highcost scenario optimistic simulation

No	Skanaria High Cost Sim	Catuan	IRR						
NU	Skenario High Cost, Sinn	Skellario High Cost, Sintulasi Optimis			13%	15%	17%	19%	
1	1 Biaya Layanan	Fast		11.899	15.181	18.881	22.723	26.688	
1		UltraFast	Pp /Popaisian	36.941	43.982	51.764	59.568	68.090	
2	2 Biava Lavanan + PPN 119	Fast	Kp/r engisiun	13.208	16.851	20.958	25.223	29.624	
2		UltraFast		41.005	48.820	57.458	66.120	75.580	
3	Biaya Listrik SPKLU	Fast	Pp/Bulan	595.104	631.535	672.605	715.251	759.262	
5	(Asumsi 10 kali pengisian/bulan)	UltraFast	KP/B0lull	873.071	951.226	1.037.606	1.124.230	1.218.825	
4	Penghematan Biaya Listrik	Fast	97	68%	66%	64%	62%	60%	
4	terhadap BBM	UltraFast	/0	53%	49%	45%	40%	35%	

	Sensitivity Sav	ings with low co	st stenano	TUV hea	SIIIISUC	Sinnulau		
Na	Changeria Laws Cost, Circu	Caturan	IRR					
NO	Skenario Low Cost, Simu	Satuan	11%	13%	15%	17%	19%	
1	Piqua Lavanan	Fast		16.495	19.843	23.661	27.653	31.795
	Bidyd Edydrian	UltraFast	Pp /Popgisian	37.053	43.615	50.661	58.215	66.328
2	0 Bigurg Lawan an L DDN 1197	Fast	Kp/i engisiun	18.309	22.026	26.264	30.695	35.292
2	bidyd Edydrian + FFN 11/6	UltraFast		41.129	48.413	56.234	64.619	73.624
2	Biaya Listrik SPKLU	Fast	Pp/Pulap	646.120	683.283	725.663	769.974	815.950
5	(Asumsi 10 kali pengisian/bulan)	UltraFast	крувоют	874.314	947.152	1.025.363	1.109.212	1.199.266
4	Penghematan Biaya Listrik	Fast	07	66%	64%	61%	59%	56%
4	terhadap BBM	UltraFast	/0	53%	49%	45%	41%	36%

 Table 17

 Sensitivity savings with low cost scenario IRR pessimistic simulation

 Table 18

 Sensitivity savings with IRR low cost simulation scenarios are moderate

No	Skonoria Low Cost, Simul	Satuan	IRR					
NO	Skenario Low Cost, Simul	asi Pesimisis	Satuan	11%	13%	15%	17%	19%
1	Biava Lavanan	Fast		9.226	11.919	14.937	18.044	21.286
	bidyd Edydrian	UltraFast	Pp/Popaisian	26.106	31.242	36.876	42.798	49.071
2	2 Bigura Lawanan + BBN 119	Fast	Kp/r engisian	10.241	13.230	16.580	20.029	23.627
2	Bidyd Edydfiait + FFN 11%	UltraFast		28.978	34.679	40.932	47.506	54.469
2	Biaya Listrik SPKLU	Fast	Pp /Pulap	565.434	595.326	628.826	663.314	699.300
3	(Asumsi 10 kali pengisian/bulan)	UltraFast	крувици	752.802	809.812	872.349	938.083	1.007.714
4	Penghematan Biaya Listrik	Fast	07	70%	68%	66%	65%	63%
4	terhadap BBM	UltraFast	/0	60%	57%	53%	50%	46%

 Table 19

 Sensitivity savings with IRR low cost simulation scenario optimistic

No	Skonaria Low Cost, Simu	Cotuon	IRR						
NU	Skenario Low Cost, Simulasi Pesimisis		Satuan	11%	13%	15%	17%	19%	
1	Biavalayanan	Fast		4.699	6.932	9.453	12.013	14.770	
		UltraFast	Pp/Popgisian	19.396	23.567	28.480	33.432	38.628	
2	Biava Lavanan + PPN 119	Fast	Kp/i engisiun	5.216	7.695	10.493	13.334	16.395	
2	Bid yd Edydrian + FFN FF/8	UltraFast		21.530	26.159	31.613	37.110	42.877	
3	Biaya Listrik SPKLU	Fast	Pp/Pulan	515.184	539.971	567.954	596.370	626.973	
5	(Asumsi 10 kali pengisian/bulan)	UltraFast	крувошт	678.321	724.619	779.154	834.121	891.796	
4	Penghematan Biaya Listrik	Fast	97	73%	71%	70%	68%	67%	
4	terhadap BBM	UltraFast	/0	64%	61%	58%	56%	52%	

Policy Support Accelerates EV Ecosystem

The need for support from the Government in the form of policies, one of which can be in the form of incentives such as: a) NIDI and SLO costs that can be borne by the Government of Rp1,000,000 to Rp2,000,000 can save investment costs of 0.4% to 1%. b) The connection fee is borne by the government by 50% of IDR 15 million to IDR 51 million so that it can reduce investment costs by 5% to 24% in 2023 and in 2024. c) With the digitization of payments by PLN, there is no need for UJL. d) Changes in the design of SPKLU, the total investment cost will be much reduced with SPKLU without using shelter can save Rp71 million to Rp200 million. So that it has the potential to reduce investment costs by 30% which has an impact on the cost of fast and ultrafast charging charging station services.

Figure 1 SPKLU without shelter with waterproof IP

Yundi Haekal Azizi, Hakimul Batih

Gas station operating hours data as a basis for calculating the number of electric vehicles charging at charging stations. In attracting investment from gas stations to support the development of charging stations and improve the electric vehicle ecosystem in Indonesia, this study collects supporting data from 6 largest gas stations in Jakarta, namely MT Haryono, Lenteng Agung, Yos Sudarso, Kalimalang, Bintaro, and Daan Mogot related to operating time as a comparison with the weighted average of 6 gas stations that the average operating hours of gas stations of 9.0 hours / day are equivalent to the number of electric vehicles as many as 18 units that do Charging 30 minutes each. Of course, this assumption using 10 liters takes 50 seconds (according to the specifications of the equipment at the gas station), considering the opening and closing time of the number until payment, and the weighted average is calculated from the average time of the total simultaneous transaction of one day (h) with the filling time (i) in units of hours as table 20 below:

	Inmlah	Iumlah	Tuonaaliai/	Valuma DDM	Pengisian Rerata	Jumlah transaksi	Total transaksi	Asumsi Waktu	Pengisian	Waktu Operasi	
SPBU	Dispenser	Nozzle	hari	Liter/hari	(Liter/Transaksi/ hari)	simultan/ dispenser	simultan satu hari	detik/ pengisian	menit/ pengisian	Menit Operasi	Jam Operasi
а	b	с	đ	е	f = e/d	g	h = d/(bxg)	i = ((f/10)x50)+30	j = i/60	k = jxh	l = k/60
MT Haryono	11	60	8.806	70.361	8,0	2	400	70	1,2	467	7,8
Lenteng Agung	6	36	5.152	45.933	8,9	2	429	75	1,2	534	8,9
Yos Sudarso Sunter	6	27	4.219	58.163	13,8	2	352	99	1,6	580	9,7
Kalimalang	4	20	4.729	34.220	7,2	2	591	66	1,1	652	10,9
Tangsel Bintaro	6	42	5.663	61.224	10,8	2	472	84	1,4	661	11,0
Daan Mogot	10	30	4.887	52.932	10,8	2	244	84	1,4	343	5,7
				Ra	ta-Rata Tertimbang I	Jtilisasi 6 SPBU					9,0

Table 20								
Gas Station	Operating T	ime Comparison						

Service Cost Calculation Recommendations

The service cost for fast and ultrafast charging technology charging stations that are right now is carried out with low cost scenarios and moderate simulations. The recommendation is based on looking at the realization of the volume of electric vehicles and energy used today and also against the references to McKinsey and ENTREV studies, while the current investment and operational costs are needed the lowest to achieve the development of fast and ultrafast charging technology charging stations and electric vehicle ecosystems with an IRR of 15% and PBP of 7 years. Here are the recommended service fees:

Uraian	Fast Charging	UltraFast Charging		
Tarif SPKLU Regulasi (Rp/kWh)	1.645	1.645		
Tarif SPKLU Seharusnya (Rp/kWh)	3.176	4.219		
Faktor N	1,93	2,57		
Kelebihan N (1,5)	0,43	1,07		
Tarif Kelebihan N (Rp/kWh)	710	1.752		
Rata-Rata Energi (kWh)	21	21		
Biaya Layanan (Rp)	14.937	36.876		
Biaya Layanan + PPN 11% (Rp)	16.580	40.932		
IRR (%)	15%	15%		
PBP (tahun)	7,05	7,04		

Table 21Fast and ultrafast charging service fee calculation

As for other alternative recommendations given, the Government can take into account the staging scheme in a given year to maintain an IRR of 15% but the Pay Back Period can be faster than < 7 years.

Recommendations for the Right Service Fee Scheme in Indonesia

The calculation of time base as an appropriate recommendation is carried out in Indonesia, this is because the time scale is 60 minutes (fixed) and which is easier for people to calculate when compared to the energy base which needs further study of the determination of battery capacity based on the existence of variations of cars that already exist in Indonesia. As for further application, it will be regulated by the

Business Entity, but the service fee with a time base does not exceed the service fee for fast and ultrafast charging technology charging stations that have been determined by the Government. Calculation of service costs with time base as follows:

Urauian	Fast Charging	Ultrafast Charging					
Biaya Layanan (Rp)	14.937	36.876					
Biaya Layanan (Rp) + PPN 11%	16.580	40.932					
Maksimal Charging (menit)	60	30					
Biaya Layanan Energy Base	249	1.639					
$\frac{(\mathbf{K}\mathbf{p}/\mathbf{K}\mathbf{W}\mathbf{n})}{10 \text{ monit }(\mathbf{P}\mathbf{n})}$	2 400	16 390					
	2.490	10.389					
30 menit (Rp)	7.469	36.876					
60 menit (Rp)	14.937	-					

Table 22Fast charging time base service fee calculation

Recommendations for Further Research

There is a more in-depth calculation of service costs using regional factorization. This research can use schemes based on area, which can be urban, suburban, and remote areas. So that it can see the density of population and the size of the area in using charging stations and electric vehicles. Of course, in urban areas with densely populated areas and with minimal land to get and build SPKLU is more difficult, so SPKLU rates and service fees are more expensive compared to suburban and remote areas. As for Indonesia, there is already Presidential Regulation Number 112 of 2022 concerning the Acceleration of Renewable Energy Development for Electricity Supply which regulates the number of location factors in Indonesia.

PRESIDEN REPUBLIK INDONESIA

LAMPIRAN II PERATURAN PRESIDEN REPUBLIK INDONESIA NOMOR 112 TAHUN 2022 TENTANG PERCEPATAN PENGEMBANGAN ENERGI TERBARUKAN UNTUK PENYEDIAAN TENAGA LISTRIK

BESARAN ANGKA FAKTOR LOKASI (F)

No.	Wilayah	Semua Kapasitas
	Jawa, Madura, Bali	1,00
1.	- Pulau Kecil	1,10
	Sumatera	1,10
	- Kepulauan Riau	1,20
2.	- Mentawai	1,20
	- Bangka Belitung	1,10
	- Pulau Kecil	1,15
2	Kalimantan	1,10
з.	- Pulau Kecil	1,15
4	Sulawesi	1,10
4.	- Pulau Kecil	1,15
-	Wilayah Semua K Jawa, Madura, Bali 1,0 - Pulau Kecil 1,1 Sumatera 1,1 Sumatera 1,1 - Kepulauan Riau 1,2 - Mentawai 1,2 - Mentawai 1,2 - Mentawai 1,2 - Mentawai 1,2 - Bangka Belitung 1,1 Kalimantan 1,1 - Pulau Kecil 1,1 Sulawesi 1,1 - Pulau Kecil 1,2 - Pulau Kecil 1,2 - Pulau Kecil 1,1 - Pulau Kecil 1,2 - Pulau Kecil 1,2 - Pulau Kecil 1,2 - Pulau Kecil 1,3 Maluku Utara 1,2 - Pulau Kecil 1,3 Maluku 1,2 - Pulau Kecil 1,3 Papua Barat 1,5 Papua 1,5	1,20
э. Г		1,25
6	Maluku Utara	1,25
о. Г	- Pulau Kecil	1,30
-	Maluku	1,25
· · [- Pulau Kecil	1,30
8.	Papua Barat	1,50
9.	Papua	1,50

PRESIDEN REPUBLIK INDONESIA,

ttd. JOKO WIDODO

Salinan sesuai dengan aslinya KEMENTERIAN SEKRETARIAT NEGARA SEKRETARIAT NEGARA DEPUBLIK INDONESIA Anton Perundang-undangan dan Meninistrasi Hukum, KEMENTERIA Silvanna Djaman SK No 135452 A

Figure 4 Annex to Presidential Regulation Number 112 of 2022 concerning the Acceleration of Renewable Energy Development for Electricity Supply

CONCLUSION

Based on the findings of the research results on the Impact Analysis of the Rules for the Provision of Electric Charging Infrastructure on the Calculation of Fast Charging and Ultrafast Charging Service Costs at SPKLUs with Time Base and Energy Base as presented in Chapter IV, some research conclusions can be put forward as follows:

1. Investment costs, operational costs, projected electric vehicle volume and energy volume greatly affect electric vehicle tariffs and service costs. In the investment and operational cost data collected, there are many price variations, so investment costs and operational costs are needed in high cost and low cost scenarios. Meanwhile, the projection of electric vehicle volume and energy volume uses a 15-year projection with pessimistic, moderate, and optimistic simulation divisions. The results of the calculation of service costs are obtained with each scenario and simulation carried out.

2. Projections of the volume of charging energy (kWh / unit / day) and EV volume (unit / day) at fast and ultrafast charging stations, projected based on data on the realization of PT PLN (Persero) SPKLU for the last 3 years (2020-2022) obtained an average of 18 kWh / unit / day and 9 units per day. In line with the reference McKinsey study growth in Southeast Asia on average 9 units / day is assumed as the base number, the increase in the number of vehicles uses a growth of 45%, while for kWh consumption per unit is assumed the average charging capability per vehicle. So that projection simulations using forcesting in excel software are obtained on average for 15 years as follows:

a. Pessimistic simulation, energy volume 19 kWh/unit/day and EV volume 13 units/day

b. Moderate simulation, energy volume 21 kWh/unit/day and EV volume 15 units/day

c.Optimistic simulation, energy volume 23 kWh/unit/day and EV volume 17 units/day

3.Based on data processing and data analysis, the following are the results of the calculation of investment costs, operational costs and service costs for each highcost and low cost scenario, as well as pessimistic, moderate, and optimistic simulations that have been carried out: a. Fast Charging

	Item		Fast Charging					
No.		Satuan	High Cost			Low Cost		
			Pesimisi	Moderat	Optimis	Pesimisi	Moderat	Optimis
1	Biaya investasi	Rp	730.702.918	730.702.918	730.702.918	491.274.000	491.274.000	491.274.000
2	Biaya operational per tahun	Rp/Tahun	185.339.007	235.380.097	280.140.897	185.130.774	235.171.864	279.932.663
3	IRR	%	15%	15%	15%	15%	15%	15%
4	PBP	Tahun	7,3	7,0	6,9	7,3	7,1	6,9
5	Tarif jual listrik SPKLU Seharusnya	Rp/kWh	4.425	3.693	3.295	3.718	3.176	2.882
6	Rp Kelebihan N sbg Biaya Layanan	Rp	37.035	25.816	18.881	23.661	14.937	9.471
0	Biaya Layanan (+ PPN 11%)		41.109	28.656	20.958	26.264	16.580	10.513

b. Ultrafast Charging

	Item		Ultrafast Charging					
No.		Satuan	High Cost			Low Cost		
			Pesimisi	Moderat	Optimis	Pesimisi	Moderat	Optimis
1	Biaya investasi	Rp	1.543.545.918	1.543.545.918	1.543.545.918	950.915.000	950.915.000	34.440.570
2	Biaya operational per tahun	Rp/Tahun	189.820.579	239.861.669	284.622.469	189.594.513	239.635.603	284.396.403
3	IRR	%	15%	15%	15%	15%	15%	15%
4	4 PBP Ta	Tahun	7,2	7,0	6,8	7,3	7,0	6,9
5	Tarif jual listrik SPKLU Seharusnya	Rp/kWh	6.922	5.506	4.739	5.146	4.219	3.717
6	Rp Kelebihan N sbg Biaya Layanan	Rp	84.253	63.971	51.764	50.661	36.876	28.480
	Biaya Layanan (+ PPN 11%)		93.520	71.008	57.458	56.234	40.932	31.612

The service cost for fast and ultrafast charging technology charging stations that are right now is carried out with low cost scenarios and moderate simulations. The recommendation is based on looking at the realization of the volume of electric vehicles and energy used today, as well as on references to McKinsey and ENTREV studies, while the current investment and operational costs are needed the lowest to achieve the development of fast and ultrafast charging technology charging stations and electric vehicle ecosystems with an IRR of 15% and PBP of 7 years.

The calculation of time base as an appropriate recommendation is carried out in Indonesia, this is because the time scale is 60 minutes (fixed) and which is easier for people to calculate when compared to the energy base which needs further study of the determination of battery capacity based on the existence of variations of cars that already exist in Indonesia. As for further application, it will be regulated by the Business Entity, but the service fee with a time base does not exceed the service fee for fast and ultrafast charging technology charging stations that have been determined by the Government.

REFERENCES

Bibi, N., Shah, I., Alsubie, A., Ali, S., & Lone, S. A. (2021). Electricity Spot Prices Forecasting Based on Ensemble Learning. IEEE Access, 9, 150984–150992. https://doi.org/10.1109/ACCESS.2021.3126545

Buku, K., & Jurnal, D. A. (n.d.). Subyek Electricity & Energy.

- Cakrawati Sudjoko. (2021). Strategi Pemanfaatan Kendaraan Listrik Berkelanjutan Sebagai Solusi Untuk Mengurangi Emisi Karbon. Jurnal Multidisipliner Mahasiswa Pascasarjana Indonesia,
- Chittenenden Country RPC. (2014). Electric Vehicle Charging Station Guidebook Planning for Installation and Operation. www.ccrpcvt.org
- Deb, S., Tammi, K., Kalita, K., & Mahanta, P. (2019). Charging Station Placement for Electric Vehicles: A Case Study of Guwahati City, India. IEEE Access, 7, 100270–100282. https://doi.org/10.1109/ACCESS.2019.2931055
- Dharmawan, I. P., S Kumara, I. N., Budiastra, I. N., Raya Kampus UNUD, J., & Bukit Jimbaran, K. (2021). Perkembangan Infrastruktur Pengisian Baterai Kendaraan Listrik Di Indonesia (Vol. 8, Issue 3).
- Ekonomi, P., Melalui, B., Kendaraan, P., Listrik Book, B., Fitriana, I., Pengkajian, B., Teknologi, P., Sugiyono, A., & Hilmawan, E. (2020). Penguatan Ekonomi Berkelanjutan Melalui Penerapan Kendaraan BerbasisListrik. https://www.researchgate.net/publication/352509509
- Emanuele, C., Robert, S., Sonja, S., & Fabian, W. (2018). Electric and Plug-in Hybrid Vehicle Networks.
- Faia, R., Soares, J., Pinto, T., Lezama, F., Vale, Z., & Corchado, J. M. (2021). Optimal Model for Local Energy Community Scheduling Considering Peer to Peer Electricity Transactions. IEEE Access, 9, 12420–12430. https://doi.org/10.1109/ACCESS.2021.3051004
- Glasgow Caledonian University, & Institute of Electrical and Electronics Engineers. (2018). Power Quality Impact of Charging Station on MV Distribution Networks: A Case Studyin PEA Electrical Power System.
- Habib, S., Kamran, M., & Rashid, U. (2015). Impact analysis of vehicle-to-grid technology and charging strategies of electric vehicles on distribution networks A review. In Journal of Power Sources (Vol. 277, pp. 205–214). Elsevier B.V. https://doi.org/10.1016/j.jpowsour.2014.12.020
- Institute of Electrical and Electronics Engineers. (2014). EV Charging Stations and Modes:International Standards.
- International Conference on Compatibility and Power Electronics 9. 2015 Caparica, Institute of Electrical and Electronics Engineers, IEEE Industrial Electronics Society, Instituto de Desenvolvimento de Novas Tecnologias Caparica, International Conference on Compatibility and Power Electronics 9 2015.06.24-26 Caparica, L., CPE 9 2015.06.24-26 Caparica, L., & IEEE IES CPE 9 2015.06.24-26 Caparica, L. (2015). An Electric Vehicle Charging Station: Monitoring and Analysis of Power Quality.
- Jawad, M., Nadeem, M. S. A., Shim, S. O., Khan, I. R., Shaheen, A., Habib, N., Hussain, L., & Aziz, W. (2020). Machine Learning Based Cost Effective Electricity Load Forecasting Model Using Correlated Meteorological Parameters. IEEE Access, 8, 146847–146864. https://doi.org/10.1109/ACCESS.2020.3014086

Kementerian ESDM. (2023). ToR Perizinan Usaha Ketenagalistrikan Untuk SPKLU dan SPBLKU.

Mastoi, M. S., Zhuang, S., Munir, H. M., Haris, M., Hassan, M., Usman, M., Bukhari, S. S. H., & Ro, J. S. (2022). An in-depth analysis of electric vehicle charging station infrastructure, policy

Yundi Haekal Azizi, Hakimul Batih implications, and future trends. In Energy Reports (Vol. 8, pp. 11504–11529). Elsevier Ltd. https://doi.org/10.1016/j.egyr.2022.09.011

Maulana Dwi Nur Dawami, Heryanto, & Akhmad Wahyu Dani. (2020). Kajian Tentang Uji Jalan Kendaraan Listrik Dengan Studi Kasus Perjalanan Bandung Jakarta. Teknologi Elektro, Universitas Mercu Buana.

McKinsey and Company. (2022a). Capturing growth in Asia's emerging EV ecosystem.

McKinsey and Company. (2022b). Future of Asia Capturing growth in Asia's emerging EV ecosystem.

- Oprea, S. V., Bâra, A., Preoţescu, D., Bologa, R. A., & Coroianu, L. (2020). A trading simulator model for the wholesale electricity market. IEEE Access, 8, 184210–184230. https://doi.org/10.1109/ACCESS.2020.3029291
- Paschalidou, A. K., Petrou, I., Fytianos, G., & Kassomenos, P. (2022). Anatomy of the atmospheric emissions from the transport sector in Greece: trends and challenges. Environmental Science and Pollution Research, 29(23), 34670–34684. https://doi.org/10.1007/s11356-021-18062-5
- Perner, A., & Vetter, J. (2015). Lithium-ion batteries for hybrid electric vehicles and battery electric vehicles. In Advances in Battery Technologies for Electric Vehicles (pp. 173–190). Elsevier. https://doi.org/10.1016/B978-1-78242-377-5.00008-X
- Sanchari, D., & Karuna, K. (2017). Review of impact of Electric Vehicle Charging Station on the power grid. IEEE.
- S&P Global Mobility. (2023). Light Vehicle Powertrain Sample.
- Sutra Kamajaya, F., & Muzmi Ulya, M. (2015). Analisis Teknologi Charger Untuk Kendaraan Listrik-Review. Jurnal Rekayasa Mesin, 6(3), 163–166.
- Wang, W., Huang, S., Zhang, G., Liu, J., & Chen, Z. (2021). Optimal Operation of an Integrated Electricity-heat Energy System Considering Flexible Resources Dispatch for Renewable Integration. Journal of Modern Power Systems and Clean Energy, 9(4), 699–710. https://doi.org/10.35833/MPCE.2020.000917
- Yatriendi, H., Nur Putra, A. M., Fachri, D., & Muchtari, A. (2022). Overview: Perkembangan Teknologi Pengisian Cepat Pada Kendaraan Listrik (Teknologi dan Infrastruktur).